
Module 6 - Standard Library and Testing

Downloaded from startertutorials.com (or) stuts.me 1

Standard Library and Testing

Introduction to Standard Library

A library is a set of files which contains pre-defined code that we can use in our own programs. For

example in our Python programs we are using print() and input() for printing and reading input. These

functions are a part of Python's default library.

Python's standard library is a collection of several modules which will be installed by default when

you install Python. There are other third party libraries which need to be installed separately after

installing Python. Some examples of third party libraries are: NumPy, SciPy, ScikitLearn etc.

Python standard library contains several modules for performing several operations from sending

email messages to creating a basic HTTP server. Some of the tasks that can be done using Python's

standard library are:

 Text manipulation

 Creating and working with data structures

 Date and time manipulation

 Mathematical calculations

 File system access

 Data access and storage

 Data compression

 Cryptography

 Process and thread management

 Networking

 Internet access and management

 Email functionality

 Internationalization and Localization

 Testing

 Operating system interfacing

Operating System Interface

The os module provides a portable interface to most of the operating systems like Windows, Linux,

Mac OS X etc. It provides functions for creating and managing processes, file system access, and

other functionality. Following are some of the functions available in os module:

Function Description

getuid() Returns the user id for the process

geteuid() Returns the effective user id for the process

getgid() Returns the group id to which the user belongs

getegid() Returns the effective group id to which the user belongs

getenv(variable_name) Returns the value of specified environment variable

getcwd() Returns the current working directory

chdir(new_dir) Moves the current working directory to the specified new directory

stat(filename) Returns information of a file like file size, permissions, owner, etc.

chmod(filename,

new_permissions)
Assigns new permissions to the specified filename

Module 6 - Standard Library and Testing

Downloaded from startertutorials.com (or) stuts.me 2

String Pattern Matching

We can search for a specific pattern in a given string using regular expressions. Regular expressions

provide a formal syntax for searching a given pattern in a string. Regular expressions in Python

follows Perl syntax. Regular expressions are implemented in Python by the re module.

The function start() takes in two arguments. First argument is the pattern we want to search and the

second argument is the text in which we want to search. The start() functions returns a Match object.

The Match object contains start() and end() functions which returns the starting and ending index of

the pattern in the string. Consider the following example:

import re

result = re.search('aa', 'My name is aakaash')

print(result.start(), result.end())

The above code prints 11 13 as the output. The pattern in this example is 'aa' and the text is 'My name

is aakaash'.

The function findall() takes pattern and text as input and returns all substrings matching pattern in the

given text. The function finditer() also takes pattern and text as input and returns an iterator that

produces Match objects. Consider the following example which returns the multiple occurrences of

the pattern:

import re

pattern = 'aa'

text = 'My name is aakaash'

for match in re.finditer(pattern, text):

 print(match.start(), match.end())

Output of the above code is as follows:

11 13

14 16

Mathematics

It is common in Python programs to perform mathematical operations. Operators provide support for

performing basic mathematical operations. Python's standard library provides support for performing

advanced mathematical operations like generating random numbers, finding logarithmic values,

performing trigonometric calculations etc.

To generate pseudo random numbers, we can use the random module. The pseudo random number

generator of Python is based on Mersenne Twister algorithm. Following are some of the functions

available in random module:

Function Description

random() Returns a floating-point value in the range 0 to 1.0

uniform(start, end) Returns a floating-point value in the range start to end

seed(value) Sets the seed value of random number generator

randint(start, end) Returns an integer in the range start to end

randrange(start, end, step)
Returns an integer in the range start to end. It is equivalent to selecting

a random number from range(start, end, step)

Module 6 - Standard Library and Testing

Downloaded from startertutorials.com (or) stuts.me 3

choice(sequence) Selects a random item from the given sequence

sample(sequence, n) Generates n samples from the sequence without repeating values

The math module contains several functions which are useful for performing advanced mathematical

computations. Following are some of the constants and functions available in math module:

Element Description

pi Prints the mathematical value of 𝜋.

e Prints the mathematical value of e.

trunc(float) Returns an integer value without the decimal part

ceil(float) Returns the integer greater than or equal to the given number

floor(float) Returns the integer lesser than or equal to the given number

modf(float) Returns a tuple containing the fractional part and the whole part

fabs(float) Returns the absolute value of the given floating-point value

fsum(list of float values) Returns the sum of floating-point values

factorial(int) Returns the factorial of given integer value

pow(x, y) Returns a floating-point value which represents the xy

sqrt(x) Returns a floating-point value which represents the square root of x

log(x) Returns a floating-point value which represents natural log. value of x

Log(x, b) Returns a floating-point value which represents log. value with base b

Internet Access

Internet access is required for almost any kind of real world application. Even a single script can

access a remote server and retrieve information or store data to it. Python provides several modules to

create web-based applications.

The urlparse module allows to manipulate URLs, i.e., splitting them or combining the individual

components together to form an URL. It can be useful either in a client program or in a server

program. Following are some of the functions available in urlparse module:

Function Description

urlparse(string)

Takes an URL as a string and returns a tuple containing the individual

components of an URL like: scheme, netloc, path, params, query, and

fragment

urlsplit(string) This function is an alternative to urlpase() function

geturl() Returns the parsed URL

urlunparse(tuple) Takes a tuple and combines the elements in the tuple in to an URL

The urllib module provides various functions that allows our script to access network resources that

do not need any authentication. It also provides support for encoding and appending arguments to be

passed over HTTP to a server. Some of the functions in the urllib module are as follows:

Function Description

urlretrieve()
Takes four arguments: temporary filename an URL, a function to report

the download progress, and data to pass if the URL refers to a form.

urlcleanup() Removes the temporary files.

urlencode()
Takes a dictionary containing data in the form of key value pairs and

appends them to the URL.

urlopen() Takes an URL as a string and returns a handle to the remote resource.

Module 6 - Standard Library and Testing

Downloaded from startertutorials.com (or) stuts.me 4

Dates and Times

Python does not provide native types to handle dates and times. Python's standard library provides

three modules which allows us to work with dates and times.

The time module contains functions to work with clock time and processor runtime. The datetime

modules provides classes and functions which provide an interface to work with date, time, and

combined values. The calendar module allows us to create formatted representation of weeks,

months, and years.

Following are some of the functions from time module:

Function Description

time()
Returns the number of seconds since the start of the epoch as a floating-

point value.

ctime() Displays the date and time in a human readable format.

clock() Returns the processor's clock time as a float.

Following are some of the functions from datetime module:

Function Description

today() This function which belongs to date class returns date of current day.

replace() Used to change the day, month, or a year in a date.

now() Returns current day date and time.

strftime(format) Displays the date and time based on the given format.

Data Compression

To save the storage area in the hard disk we can compress the existing files. Python's standard library

provides various modules to work with various popular compression libraries.

Python's zlib and gzip modules provides an interface to the GNU zip library. The module bz2 supports

the recent bzip2 format. We can use these modules for reading and writing compressed files.

The zlib module provides a low-level interface to many of the functions in the zlib compression

library from the GNU project. For working with zlib, the data that need to be compressed or

decompressed needs to be in the memory. The zlib module contains a function compress() to

compress the data and another function decompress() to decompress the data. Following is an

example which demonstrates compressing and decompressing data using the zlib module:

import zlib

import binascii

original_data = ’This is the original text.’

print ’Original :’, len(original_data), original_data

compressed = zlib.compress(original_data)

print ’Compressed :’, len(compressed), binascii.hexlify(compressed)

decompressed = zlib.decompress(compressed)

print ’Decompressed :’, len(decompressed), decompressed

The output for the above code is as follows:

Original : 26 This is the original text.

Compressed : 32 789c0bc9c82c5600a2928c5485fca2ccf4ccbcc41c8592d48a123d007f2f097e

Module 6 - Standard Library and Testing

Downloaded from startertutorials.com (or) stuts.me 5

Decompressed : 26 This is the original text.

Multithreading

Threading allows several parts of a program to run in parallel (concurrently). This allows the program

to execute faster and to keep the CPU busy. The threading module of Python's standard library allows

us to easily manage several threads of execution. This module builds on the low-level features

provided by thread.

The simplest way to create a thread is to create an object for the Thread class with a target function

and call the start() function to start the execution of the thread. Following program demonstrates

creating and executing a thread:

import threading

def worker():

 """thread worker function"""

 print ’Worker’

 return

threads = []

for i in range(5):

t = threading.Thread(target=worker)

threads.append(t)

t.start()

Output of the above program is as follows:

Worker

Worker

Worker

Worker

Worker

We can pass information to a thread as arguments. Any type of object can be passed as an argument to

the thread. Following example demonstrates passing arguments to the function:

import threading

def worker(num):

 """thread worker function"""

 print ’Worker: %s’ % num

 return

threads = []

for i in range(5):

t = threading.Thread(target=worker, args=(i,))

threads.append(t)

t.start()

Output for the above program is as follows:

Worker: 0

Module 6 - Standard Library and Testing

Downloaded from startertutorials.com (or) stuts.me 6

Worker: 1

Worker: 2

Worker: 3

Worker: 4

Turtle Graphics

Turtle graphics is a popular way to introduce programming. It was part of the original Logo

programming language. Python's standard library provides the turtle module to access the graphics

package. To use the turtle module, write the following:

import turtle

Now, we can use the functions available in the turtle module. For example, we can move the turtle

forward by 200 steps by using the function forward() as follows:

turtle.forward(200)

Following are some of the functions available in turtle module:

Function Description

forward(distance) Moves the turtle forward by specified distance

backward(distance) Moves the turtle backward by specified distance

right(angle) Turn the turtle right by specified angle

left(angle) Turn the turtle left by specified angle

setpos(x, y) Set the position of turtle based on the given x and y co-ordinates

setx(x) Set the x coordinate of turtle

sety(y) Set the y coordinate of turtle

home() Move the turtle to the origin (0, 0)

circle(radius) Draw circle with the given radius

Some interesting programs can be written to generate graphics using the turtle graphics module.

Following is one such program to draw circle pattern with different colors:

import turtle

x = 0

for _ in range(30, 361, 30):

 if(x % 3 == 0): turtle.pencolor("red")

 if(x % 3 == 1): turtle.pencolor("green")

 if(x % 3 == 2): turtle.pencolor("blue")

 turtle.circle(50)

 turtle.right(30)

 x = x + 1

n = input()

Output of the above program is as follows:

Module 6 - Standard Library and Testing

Downloaded from startertutorials.com (or) stuts.me 7

GUI Programming

Python provides tkinter module for GUI programming. The type of programming in which a user can

see an interface containing different widgets (controls) and interact with them using mouse is known

as GUI programming.

The tkinter module is an interface to the popular Tk GUI toolkit which was developed as an extension

to the Tcl scripting language. Tkinter is an acronym for Tk interface. Tk toolkit provides the following

widgets:

 button

 canvas

 checkbutton

 combobox

 entry

 frame

 label

 labelframe

 listbox

 menu

 menubutton

 message

 notebook

 tk_optionMenu

 panedwindow

 progressbar

 radiobutton

 scale

 scrollbar

 separator

 sizegrip

 spinbox

 text

 treeview

It provides the following top-level windows:

 tk_chooseColor - pops up a dialog box for the user to select a color.

 tk_chooseDirectory - pops up a dialog box for the user to select a directory.

 tk_dialog - creates a modal dialog and waits for a response.

 tk_getOpenFile - pops up a dialog box for the user to select a file to open.

Module 6 - Standard Library and Testing

Downloaded from startertutorials.com (or) stuts.me 8

 tk_getSaveFile - pops up a dialog box for the user to select a file to save.

 tk_messageBox - pops up a message window and waits for a user response.

 tk_popup - posts a popup menu.

 toplevel - creates and manipulates toplevel widgets.

Tk also provides three geometry managers:

 place - which positions widgets at absolute locations

 grid - which arranges widgets in a grid

 pack - which packs widgets into a cavity

Following is a simple program to create a window using tkinter module:

import tkinter

top = tkinter.Tk()

Code to add widgets will go here...

top.mainloop()

The output of the above code is a window as follows:

Module 6 - Standard Library and Testing

Downloaded from startertutorials.com (or) stuts.me 9

Testing

Introduction

Testing is the practice of writing code that helps to find if there are any errors in the actual logic of the

program. It does not prove that our logic is correct. It only reports if the conditions given by the tester

are handled correctly or not. Testing is generally used to find out logical errors, as syntax errors will

be reported by the Python runtime itself.

Unit testing is about specifically testing a unit. A unit in a Python program or script can be an entire

module, a single class, a single class, or almost anything in between. Following are some of the

reasons why testing is needed:

 Testing makes sure that our codes work properly under a given set of conditions.

 Testing allows us to make sure that changes to the code did not break existing functionality.

 Testing forces us to think about the code under unusual conditions, possibly revealing errors

in the process.

Unit Testing in Python

Python's standard library provides unittest module for performing unit testing on our Python code. A

unit test consists of one or more assertions. Assertion is statement which is supposed to be always

true. The unittest module contains many assert functions. These functions are available in unittest.

TestCase class. One such function is assertTrue() which takes an argument and asserts it to be True.

Writing Test Cases

Consider the following program which contains two functions for printing the next prime number:

def is_prime(number):

 """Return True if *number* is prime."""

 for element in range(number):

 if number % element == 0:

 return False

 return True

def print_next_prime(number):

 """Print the closest prime number larger than *number*."""

 index = number

 while True:

 index += 1

 if is_prime(index):

 print(index)

We have two functions, is_prime and print_next_prime. If we wanted to test print_next_prime, we

would need to be sure that is_prime is correct, as print_next_prime makes use of it. In this case, the

function print_next_prime is one unit, and is_prime is another.

Let's assume that the above Python code is saved in a file named primes.py. Now, let's write our test

code inside another file named test_primes.py. The test case for checking the function is_prime is as

follows:

Module 6 - Standard Library and Testing

Downloaded from startertutorials.com (or) stuts.me 10

import unittest

from primes import is_prime

class PrimesTestCase(unittest.TestCase):

 """Tests for `primes.py`."""

 def test_is_five_prime(self):

 """Is five successfully determined to be prime?"""

 self.assertTrue(is_prime(5))

if __name__ == '__main__':

 unittest.main()

The file creates a unit test with a single test case: test_is_five_prime. Using Python's built-in unittest

framework, any member function whose name begins with test in a class deriving from

unittest.TestCase will be run, and its assertions checked, when unittest.main() is called.

Running Test Cases

We can run the test cases by running the Python code which contains the test cases. In out example

we will use the command python test_primes.py to run the test cases. We'll see the output of the

unittest framework printed on the console:

$ python test_primes.py

E

==

ERROR: test_is_five_prime (__main__.PrimesTestCase)

--

...

The single "E" represents the results of our single test (if it was successful, a "." would have been

printed). We can see that our test failed, the line that caused the failure, and any exceptions raised.

